Ülo Ennuste Economics

papers and articles in wordpress

Keynes’liku dimensionaalsuse poole

Liikmesriigi rahvusliku majanduspoliitika dimensionaalsus-vaegusest

Võiks ju öelda et dimensioone nii et küll saab – et vaadake nt aga Komisjoni töö köögipoolelt nt liikmesriikide rahvuslikele majandustele määratud indikatiivseid

prognooside/projitseeringute/konjektuuride

statistilisi lisasid mis sisaldavad tosinaid indikaatorite klastreid ning nendes igaühes omakorda arvukaid lähte-indikaatoreid (vt nt Lisa A milles Komisjoni 2013 Kevadprognoosi Statistilisest Lisast vastav lõiku Eesti kohta No 81 üle poolesaja näiduga).

Kuid häda on selles et need ikkagi kaugeltki ei rahulda moodsa IKT ja neo-normaalse (kriisjärgse, sotsiaa-võrgustikuga jne) majandusküberneetika formaati – võiks ka öelda mingis ligikaudses kronoloogilises järjekorras et ei rahulda isegi nt ainult eeskätt

Keynes/Nash/Samuelson/Hayek/Hurwicz/Friedman/O.Williamson/Mirrlees/Phelps/Krugman

–          nende Nobelistide (v.a Keynes) klastri poolt loodud teooriate heterodokse ühisosa dimensionaalsuse ala piisavalt – seda kõike muidugi neo-normaalsuse rakursist.

Tõepoolest nt: puudub isegi T&A tegevuse areng – rääkimata innovatsioonist (vt värskeid kommentaare selle ala kohta neo-normaalsuse ehk sotsiaalse turumajanduse ehk Friedman’liku mitteõhukese riigi näitel nt Lisast B) – rääkimata institutsionaalsete(Williamson)/mehhanismide(Hurwicz) reformimise teaduspõhistest plaanidest eriti õiglasema/optimaalsema maksustamise (Mirrlees) vallas – puudub tööjõu ja kapitali kodumaine netobilanss muu maailma suhtes – puudub finantssektor ja jaehinna indeks – ei suurt midagi rahvuslike varade muutude kohta –  puudub sotsiaalsfäär (eeskätt majanduslik ebavõrdsus (siin tuleks ka mittelineaarsust arvestada) nii elanike rühmiti kui piirkonniti ning mitmest aspektist nagu tulude ning kulutuste alusel, pensionite reaaltõus jaehinna indeksiga defleerituna jne) ning heaolu muut mitmest aspektist – mis kõige hullem et puudub igasugune Phelps’lik riskiarvestus üle kogu näitude profiili ning seejuures statistika värskendub teosammul nagu toimiks arvelaudadel, jne jne.

Vist ei oleks paljuks nõuda ka potentsiaalse disainilõhe mõõtmist (s.o kehtiva majandusmudeli distantsi optimaalsest disainist (vt Forrester’i Lisas D)

Muideks neo-normaalsuse (kriisjärgse heaolu makro-ökonoomika ja -küberneetika) järgi GDP tempo tõus (kuna ei pruugi jõuda kodumaise kasutuse sfääri ja on seda suhtkõrgem mida rängem oli kriis nagu Eestis), keskvalitsuse võlg/defitsiit (kuna on veeretatud erasektori kaela) – töötuse määr (kuna väheneb ju tööjõu pagemisega piiritaha jne) on kõik kolmanda-neljandajärgu madalama olulisuse tasemega prüginäidud :=)

Moraal:

Muidugi kuulub neo-normaalsuse juurde IKT revolutsiooni poolt loodud täiendavad võimalused informatsiooni/indikaatorite täiendavaks produtseerimiseks rahvusliku majanduse poliitika komplekskäsitluseks (vt nt Lisa C)

Loomulikult on sellel protsessil optimaalne idiosünkraatne maht nii indikaatorite arvult kui nende mõõdetavuselt kui ka liikmesriigi omapärade järgi – eriti rahvusliku teadmusruumi ja selle mehhanismide kvaliteedi põhjal – nt oleks dimensiooni „kapitalismi määr“ mõõtmine“ meie majandusmudelis küllaltki problemaatiline et mitte öelda mõttetu (muide äsja soovitatud meie ühe väga kõrge pangabossi poolt – vt nt Lisa D mille alusel saaksime mõttekalt rääkida küll meie praeguse mudeli divergeerumisest lokaalselt optimaalsest kapitalistliku mudeli tüübist või siis nt Põhjala Tüübist) ja nt Soomel on majandusvõimekust anda välja kaks korda mahukamat Statisika Aastaraamatut kui meil jne

Ülalkirjeldatu on eeskätt majanduspoliitilisest rakursist ning nt nii teadusliku kui ka doktoriõppe tasemelt tuleks meil nt taotleda siirdumist nt hoopiski  Samuelson-Mereste (Mereste 2003 Leksikon sisaldab üle 20-ne tuhande märksõna) palju avarama ja kompleksema (ülalkirjeldatust) dimensionaalsuse suunas/poole – loomulikult eeskätt nende Jüngrite (nt eeskätt Stigliz, Sen, V. Vensel jne) täiendavate teaduspanuste hõlmamisega ning teadlate täiendavate “eetiliste subsiidiumitega” kapitalismi sotsiaalsete turumajanduslike mudelite kvaliteetide edendamiseks (nt sotsiaal-majandusliku komplekstulemusliku dimensioonides: heaolutase&jätkusuutlikkustõenäosus või midagi taolist)

Igal juhul rahvusliku majanduse vaeg-dimensionaalne käsitlemine ning lisaks institutsioonide/mehhanismide kvaliteedi mittemõõtmine ning nende komplementaarsuse mittearvestamine viivad sotsiaal-majanduslike otsustusvigadeni isegi kõige kõrgemal poliitilisel ning administratiivsel tasemel. Selle kohta hea näide on prof Lagerspetz’ilt (http://www.sirp.ee/index.php?option=com_content&view=article&id=18802:edetabelite-kiirkursus&catid=9:sotsiaalia&Itemid=13&issue=3450)

millest nt loeme:

„Kokkuvõttes paistab Eesti arengu nõrgim lüli olevat vähene panustamine inimkapitali. Liialt suured erinevused ühiskonna sees seavad piiri ühiskonna kui terviku heaolu edasisele kasvule. Vastupidi tihti esitatud hüpoteesile ei erguta sotsiaalse kaitstuse madal tase inimesi panustama vabatahtlikku töösse, vaid mõjub hoopis pärssivalt (lk 103-104). Kui Eesti, üks Euroopa suurima majandusliku ebavõrdse tasemega riike, ei ole endale loonud ebavõrdsust efektiivselt vähendavat sotsiaalpoliitikat (lk 106), kõlab väga kohatult riigi presidendi eessõnas esitatud üleskutse „kriitiliselt hinnata sotsiaalkulude osakaalu” (lk 4).“

Tõepoolest kohatult kõlab Riigi Presidendi (Ameti) poolt  selline väide – ning – ilmselt mängib selles apsus suurt rolli asjaolu et nt Eesti majandusliku ebavõrdsuse administratiivses statistilises pildis puudub parajasti nii selle mõõtmise kulutuspõhine (on ainult tulupõhine) dimensioon (muidugi oleks liiga palju nõuda sellelt Institutsioonilt ebavõrdsuse mõju mittelineaarset arvestamist + et rahvuslikus teadmusruumis on moonutatult ja poliitkallutatult ületähtsustatud nt GDP kasvutempo mis heaolu kasvu suhtes on suht-väheusaldusväärne näit (nt äpardmehhanismide tõttu siiratakse oluline osa meie kogumaisest kogutoodangust piiritaha, lisaks sisaldab GDP imaginaarseid tulusid mis ei kuulu maksustamisele (nt elamispinna omanik arvestuslikult saab renti iseendalt) ja lisaks kasvutempo kui jagatis sisaldab meil suhtsuurt matemaatilist illusiooni seoses suhtmadala baasiga võrreldes valdava enamuse liikmesriikidega). Ei saa jätta märkimata et Presidendi väitel näib olevat vanamoodsat teoreetilist mekki meie teadmusruumist mis näib tulenevat nt Samuelson’i poolt formuleeritud kui „raudse palgaseadus“ (palgad ainult töölistele hingitsemiseks) dogmast mis meie parajasti tööjõu anomaalse väljarände puhul ei sobi mitte kuidagi  – ning samuti Anti-Krugman’likku heaolumajanduse eel-normaalsuse dogmaatilist mekki (nt eelarve kärped iga hinna eest – teistele liikmesriikidele (teadustühiselt) kelkivaks eeskujuks).

Lõpuks tuleb veelkord rõhutada et liikmesriigi sotsiaal-majandusliku küberneetilise süsteemi evolutsioonis (sh dimensionaalsuses) on väga oluline rahvusliku teamus-struktuuri kvaliteet (vt Lisa D) – ja selle hägustamine teadustühiste mõttetute säutsudega eeskätt võimurite poolt (nt süsteemis on vähe kapitalismi või liialt palju sotsialismi jne) on väga kahetsusväärne.

Lisa A

http://ec.europa.eu/economy_finance/publications/european_economy/2013/pdf/2013_05_03_stat_annex_en.pdf

Main economic indicators 2001-2014

81. Estonia

(Annual percentage change, unless otherwise stated)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

1. Growth of GDP and its components (real)

1.1 Private consumption 7.0 9.5 9.2 8.1 9.5 13.5 8.8 -5.2 -14.8 -2.4 3.5 4.4 3.3 3.5

1.2 Government consumption 2.7 3.4 6.3 1.1 3.2 5.0 6.6 4.6 -1.9 -0.8 1.4 4.0 0.8 0.3

1.3 Gross fixed capital formation 13.1 24.2 16.7 6.0 15.2 23.0 9.3 -13.3 -38.3 -7.4 25.7 21.0 3.0 7.3

1.4 of which equipment 15.9 25.6 27.0 -3.3 2.1 32.9 12.2 -20.4 -55.0 2.2 102.7 14.9 9.5 11.7

1.5 of which construction 9.6 23.3 7.8 15.4 26.3 16.1 7.1 -10.4 -30.5 -9.9 -6.2 26.4 -2.7 2.8

1.6 Exports of goods and services 4.0 -2.7 7.7 14.5 18.6 6.1 3.7 1.0 -20.6 22.9 23.4 5.6 4.1 6.2

1.7 Imports of goods and services 4.8 7.2 11.2 14.7 18.9 13.9 6.3 -7.0 -32.0 21.0 25.0 9.1 3.6 5.9

1.8 GDP 6.3 6.6 7.8 6.3 8.9 10.1 7.5 -4.2 -14.1 3.3 8.3 3.2 3.0 4.0

2. Demand components: Contribution to changes in GDP (%)

2.1 Consumption 4.4 6.0 6.3 4.8 5.9 8.3 5.9 -2.0 -8.5 -1.5 2.1 3.0 1.9 1.9

2.2 Investment 3.4 6.4 5.0 1.9 4.7 7.4 3.4 -4.7 -11.6 -1.6 4.9 4.6 0.8 1.8

2.3 Stockbuilding -0.7 2.3 -0.3 0.9 -0.2 1.4 0.8 -3.5 -2.1 4.1 2.1 -0.3 -0.1 0.0

2.4 Domestic demand 7.1 14.6 11.0 7.6 10.4 17.1 10.1 -10.3 -22.2 1.1 9.2 7.3 2.6 3.7

2.5 Exports 3.4 -2.1 5.5 10.0 13.6 4.7 2.7 0.7 -14.7 14.9 18.6 5.1 3.8 5.7

2.6 Final demand 10.5 12.5 16.5 17.6 24.0 21.8 12.8 -9.6 -36.9 16.0 27.7 12.4 6.3 9.4

2.7 Imports -4.2 -5.9 -8.7 -11.3 -15.1 -11.7 -5.3 5.3 24.0 -12.4 -18.2 -8.0 -3.3 -5.4

2.8 Net exports -0.8 -8.0 -3.3 -1.2 -1.5 -7.0 -2.6 6.0 9.4 2.5 0.4 -2.9 0.5 0.3

3. Gross savings and investment in % of GDP at current prices

3.1 Private sector savings 18.7 16.2 15.8 16.6 18.4 16.2 15.3 18.2 20.0 21.1 22.7 20.7 21.3 22.3

3.2 Net savings of households -2.2 -3.4 -3.7 -6.4 -5.4 -6.4 -4.1 -2.2 3.3 0.3 -0.1 : : :

3.3 General government savings 4.3 5.7 6.0 5.1 5.3 6.8 7.6 3.2 2.0 2.1 3.4 4.3 4.1 3.7

3.4 National savings 22.9 21.9 21.8 21.7 23.6 23.0 22.9 21.4 22.0 23.3 26.1 25.0 25.4 26.0

3.5 Gross capital formation 27.9 32.3 33.1 33.1 33.8 38.7 38.6 30.0 18.5 20.3 24.8 27.6 27.2 27.6

3.6 Current account -5.0 -10.4 -11.4 -11.4 -10.1 -15.7 -15.7 -8.5 4.2 3.2 0.6 -3.1 -2.2 -2.0

4. Determinants of investment

4.1 Capacity utilisation (survey) (a) 66.8 72.4 74.5 73.9 74.7 77.3 78.6 77.0 70.6 58.5 67.3 72.5 72.5 :

4.2 Trend GDP gap -2.1 -1.8 0.0 0.8 4.6 10.6 14.8 7.0 -10.1 -9.0 -3.4 -2.3 -1.2 0.8

4.3 Potential GDP gap 2.3 2.8 3.9 3.4 5.5 9.3 12.0 4.6 -9.4 -6.0 0.5 1.4 1.2 1.3

4.4 Profitability index (1961-1973 = 100) : : : : : : : : : : : : : :

5. Growth potential

5.1 Growth of net capital stock (real) 6.3 8.0 9.1 8.6 9.3 11.3 11.1 7.4 1.9 1.2 2.7 4.2 4.1 4.4

5.2 Net capital/output ratio (real) 2.2 2.2 2.3 2.3 2.3 2.3 2.4 2.7 3.2 3.1 3.0 3.0 3.0 3.1

5.3 Growth of capital intensity 5.4 6.6 7.6 8.6 7.2 5.6 10.2 7.2 13.3 6.3 -4.0 1.9 3.7 3.4

5.4 Labour productivity growth 5.4 5.1 6.3 6.4 6.7 4.5 6.6 -4.3 -4.5 8.5 1.2 1.0 2.7 3.0

5.5 Total factor productivity growth 2.7 1.9 2.6 2.2 3.2 1.7 1.7 -7.5 -10.1 5.3 3.2 0.0 0.9 1.3

6. Employment and unemployment

6.1 Employment 0.8 1.4 1.4 0.0 2.0 5.4 0.8 0.2 -10.0 -4.8 7.0 2.2 0.3 1.0

6.2 Activity rate 72.4 71.5 72.4 72.2 72.2 75.2 75.5 76.5 76.2 75.9 77.2 77.8 78.3 79.2

6.3 Employment rate 63.3 64.2 65.1 65.3 66.5 70.8 72.0 72.3 65.8 63.2 67.6 69.9 70.7 72.1

(benchmark)

6.4 Employment rate : : : : : : : : : : : : : :

(full-time equivalent)

6.5 Unemployment rate 12.6 10.3 10.1 9.7 7.9 5.9 4.6 5.5 13.8 16.9 12.5 10.2 9.7 9.0

(Eurostat definition)

7. Prices and wages

7.1 Nominal wages per head 9.6 9.1 11.6 12.3 10.8 14.0 25.0 9.7 -3.2 1.8 -0.2 6.7 5.7 6.1

7.2 Real wages per head (b) 3.1 5.5 9.9 8.7 6.6 8.4 15.8 1.7 -1.9 -0.8 -5.0 3.1 2.3 2.8

7.3 Nominal unit labour costs 4.0 3.8 5.0 5.5 3.8 9.1 17.2 14.6 1.4 -6.2 -1.4 5.6 2.9 3.0

7.4 Real unit labour costs -2.3 -0.8 0.9 1.0 -2.1 0.3 5.0 8.7 2.8 -6.8 -4.2 2.3 -0.2 -0.3

7.5 GDP deflator 6.5 4.7 4.0 4.5 6.1 8.8 11.6 5.4 -1.4 0.7 2.9 3.2 3.1 3.3

7.6 Private consumption deflator 6.3 3.5 1.6 3.3 3.9 5.2 7.9 7.8 -1.3 2.6 5.0 3.4 3.3 3.2

7.7 Terms of trade 1.9 2.9 2.8 1.2 1.4 2.0 2.9 -0.8 -0.7 -2.0 -3.1 -0.6 0.0 0.1

8. General government budget, % of GDP

8.1 Expenditure 34.8 35.8 34.8 34.0 33.6 33.6 34.0 39.7 45.5 40.7 38.3 40.5 39.6 37.6

8.2 Current revenues 34.7 36.0 36.5 35.6 35.2 36.1 36.4 36.7 43.5 40.9 39.5 40.2 39.3 37.8

8.3 Net borrowing (-) or lending (+) -0.1 0.3 1.7 1.6 1.6 2.5 2.4 -2.9 -2.0 0.2 1.2 -0.3 -0.3 0.2

8.4 Net borrowing cyclically adjusted -0.7 -0.6 0.5 0.6 0.0 -0.3 -1.2 -4.3 0.8 2.0 1.0 -0.7 -0.6 -0.2

8.5 Debt (end of period) 4.8 5.7 5.6 5.0 4.6 4.4 3.7 4.5 7.2 6.7 6.2 10.1 10.2 9.6

9. Monetary conditions

9.1 Long-term interest rate 10.2 8.4 5.3 4.4 4.2 5.0 6.1 8.2 7.8 5.9 : : : :

9.2 Short-term interest rate 5.3 3.9 2.9 2.5 2.4 3.2 4.9 6.7 5.9 1.6 1.4 0.6 : :

9.3 Yield curve (9.1-9.2) 4.8 4.5 2.3 1.9 1.8 1.9 1.2 1.5 1.9 4.3 : : : :

9.4 Real long-term interest rate (c) 3.4 3.6 1.2 -0.1 -1.8 -3.5 -5.0 2.6 9.3 5.1 : : : :

9.5 Nominal effective exchange rate 1.7 0.7 3.2 0.9 -0.1 0.2 1.1 1.4 2.4 -3.0 -0.4 -1.5 0.5 0.0

9.6 Real effective exchange rate 84.6 87.1 92.9 98.4 100.0 107.3 122.9 135.2 135.3 125.2 121.6 123.5 125.5 127.1

(2005=100; ULC in total economy)

(a) Manufacturing industry

(b) Private consumption deflator

(c) GDP deflator

Lisa B

(High quality global journalism requires investment. Please share this article with others using the link below, do not cut & paste the article. See our Ts&Cs and Copyright Policy for more detail. Email ftsales.support@ft.com to buy additional rights. http://www.ft.com/intl/cms/s/2/32ba9b92-efd4-11e2-a237-00144feabdc0.html#ixzz2bMKCsoRj)

August 4, 2013 3:17 pm FT

„A much-maligned engine of innovation“

Review by Martin Wolf

A brilliant exploration of new ideas in business argues that government is behind the boldest risks and biggest breakthroughs

The Entrepreneurial State: „Debunking Public vs Private Sector Myths“, by Mariana Mazzucato, Anthem Press, RRP£14.99, RRP$18.95 …

Lisa C

Journal of Institutional Economics / Volume 9 / Issue 03 / September 2013, pp 257-284

Copyright © Millennium Economics Ltd  

Buy This Article   $45.00 / £30.00

„Institutional change and information production“

FABIO LANDINI

Abstract:

The organization of information production is undergoing a deep transformation. Alongside corporations, which have been for long time the predominant institutions of information production, new organizational forms have emerged, e.g. free software communities, open-content on-line wikis, and collective blogs. The paper investigates the factors that favoured the emergence of these alternative systems, called peer production. Different from the previous literature, the paper considers technology as an endogenous variable in the process of organizational design. On this basis, the paper argues that the diffusion of digital technology is a necessary but not sufficient condition to explain the emergence of peer production. A similarly important role has been played by the set of ethics that motivated the early adherents to the free software movement. Such an ethics indeed operated as a ‘cultural subsidy’ that helped to overcome the complementarities existing among distinct institutional domains, and let a new organizational species to emerge.

Ja

Ennuste, Ü. 2008. Synthetic Conceptions of Implementing Mechanisms Design for Public Socio-Economic Information Structure: Illustrative Estonian Examples. Kirch, Aksel; Kerikmäe, Tanel; Talts, Mait (Eds.) Socio-economic and institutional environment: harmonisation in the EU countries of Baltic Sea Rim: a collection of research articles dedicated to the 10th Anniversary of the Institute for European Studies, Tallinn: Tallinn University of Technology: http://www.ies.ee/iesp/No4/Ennuste.pdf

Lisa D

http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2009/advanced-economicsciences2009.pdf

Scientific Background on the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2009

ECONOMIC GOVERNANCE

compiled by the Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences

THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their influence in society.

BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN

TEL +46 8 673 95 00, FAX +46 8 15 56 70, INFO@KVA.SE  HTTP://KVA.SE

1 (19)

Economic Governance

Introduction

Institutions are sets of rules that govern human interaction. The main purpose of many institutions

is to facilitate production and exchange. Examples of institutions that affect human prosperity

by enabling production and exchange include laws, business organizations and political

government. Economic governance research seeks to understand the nature of such institutions

in light of the underlying economic problems they handle.

One important class of institutions is the legal rules and enforcement mechanisms that protect

property rights and enable the trade of property, that is, the rules of the market. Another class of

institutions supports production and exchange outside markets. For example, many transactions

take place inside business firms. Likewise, governments frequently play a major role in funding

pure public goods, such as national defense and maintenance of public spaces. Key questions

are therefore: which mode of governance is best suited for what type of transaction, and to what

extent can the modes of governance that we observe be explained by their relative efficiency?

This year’s prize is awarded to two scholars who have made major contributions to our understanding

of economic governance, Elinor Ostrom and Oliver Williamson.

In a series of papers and books from 1971 onwards, Oliver Williamson (1971, 1975, 1985) has

argued that markets and firms should be seen as alternative governance structures, which differ

in how they resolve conflicts of interest. The drawback of markets is that negotiations invite

haggling and disagreement; in firms, these problems are smaller because conflicts can be resolved

through the use of authority. The drawback of firms is that authority can be abused.

In markets with many similar sellers and buyers, conflicts are usually tolerable since both sellers

and buyers can find other trading partners in case of disagreement. One prediction of

Williamson’s theory is therefore that the greater their mutual dependence, the more likely

people are to conduct their transactions inside the boundary of a firm.

The degree of mutual dependence in turn is largely determined by the extent to which assets can

be redeployed outside the relationship. For example, a coal mine and a nearby electric generating

plant are more likely to be jointly incorporated the greater the distance to other mines and plants.

Elinor Ostrom (1990) has challenged the conventional wisdom that common property is poorly

managed and should be completely privatized or regulated by central authorities. Based on

numerous studies of user-managed fish stocks, pastures, woods, lakes, and groundwater basins,

Ostrom concluded that the outcomes are often better than predicted by standard theories. The

2 (19)

perspective of these theories was too static to capture the sophisticated institutions for decisionmaking

and rule enforcement that have emerged to handle conflicts of interest in user-managed

common pools around the world. By turning to more recent theories that take dynamics into

account, Ostrom found that some of the observed institutions could be well understood as equilibrium

outcomes of repeated games. However, other rules and types of behavior are difficult to

reconcile with this theory, at least under the common assumption that players are selfish materialists

who only punish others when it is their own interest. In field studies and laboratory experiments

individuals’ willingness to punish defectors appears greater than predicted by such a

model. These observations are important not only to the study of natural resource management,

but also to the study of human cooperation more generally.

The two contributions are complementary. Williamson focuses on the problem of regulating

transactions that are not covered by detailed contracts or legal rules; Ostrom focuses on the

separate problem of rule enforcement.

Both Ostrom’s and Williamson’s contributions address head-on the challenges posed by the

1991 Laureate in Economic Sciences, Ronald Coase (1937, 1960). Coase argued that no satisfactory

theory of the firm could rely entirely on properties of production technologies, because

economies of scale and scope might be utilized either within or across legal boundaries. Instead,

the natural hypothesis is that firms tend to form when administrative decision-making yields

better outcomes than the alternative market transaction. While Coase’s argument eventually

convinced economists about the need to look inside the boundaries of firms, it offered only the

preliminaries of an actual theory of the firm. Without specifying the determinants of the costs

associated with individual bargains or the costs of administrative decision-making, Coase’s

statement has little empirical content. The challenge remained to find ways of sharpening the

theory enough to yield refutable predictions. What exactly do organizations such as firms and

associations accomplish that cannot be better accomplished in markets?

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Ja

 

Jay W. Forrester (1998) Designing the Future. Universidad de Sevilla Sevilla, Spain, December 15, 1998, Copyright © 1998 by Jay W. Forrester, Permission granted for copying and electronic distribution for non-commercial educational purposes.

 

Loengu lõpulõik:

 

„ …. The Profession of Social System Design

Social-system design will become a recognized profession. It will require the

same kind of intensive education that is necessary in other professions. Only

fragments of a system-designer education now exist. Teaching materials are

available for no more than a two-year sequence in system dynamics. Many

academic levels now teach system dynamics—in precollege schools, in

undergraduate programs, and in graduate schools. However, the different

educational levels all start with students as beginners. The programs are not

cumulative. Education in the behavior of social systems is now at about the same

point of development as was education in medicine and engineering a hundred years

ago.

Social system design presents a major challenge to the educational

establishment. Precollege schools from kindergarten through age seventeen are

now pioneering the use of system dynamics as a foundation under most subjects.

Teachers and students are building simulation models of environmental, family, city,

and political systems. English teachers are experimenting with simulation of plots in

literature. Students are fascinated with the insights gained by modeling

psychological dynamics as in Shakespeare’s “Hamlet.”

After observing progress in learning about systems in kindergarten through

high school, many of us believe that everything now known in the field of system

dynamics can be learned by age 14. If all that we now know about systems can be learned before high school, we lack material for the four years of high school, and the four years of undergraduate education, and three years of graduate study. We must create at least eleven years more of educational materials before we can claim to have a curriculum for training social-system designers.

During the past century, the frontier of human advancement has been the

exploration of science and technology. Science and technology are no longer

frontiers, they have receded into the fabric of everyday activity. I believe that we

are now embarking on the next great frontier, which will lead to a far better understanding of social and economic systems.“

Ning

Journal of Institutional Economics / Volume 9 / Issue 01 / March 2013, pp 1-26

Copyright © Millennium Economics Ltd 2012 Buy This Article   $45.00 / £30.00

„How (Not) to measure institutions“

STEFAN VOIGT

Director, Institute of Law & Economics, University of Hamburg, Rothenbaumchaussee 36, 20148 Hamburg, Germany

Abstract:

The statement ‘institutions matter’ has become commonplace. A precondition for it to be supported by empirical evidence is, however, that institutions are measurable. Some of the difficulties in measuring institutions are described and some ways of measuring them are proposed.

Ja

Journal of Institutional Economics / Volume 9 / Issue 01 / March 2013, pp 1-26

Copyright © Millennium Economics Ltd 2012 Buy This Article   $45.00 / £30.00

Institutional quality dataset

ALJAŽ KUNČIČ

Abstract

In this paper, we emphasize the role of institutions as the underlying basis for economic and social activity. We describe and compare different institutional classification systems, which is rarely done in the literature, and show how to empirically operationalize institutional concepts. More than 30 established institutional indicators can be clustered into three homogeneous groups of formal institutions: legal, political and economic, which capture to a large extent the complete formal institutional environment of a country. We compute the latent quality of legal, political and economic institutions for every country in the world and for every year. On this basis, we propose a legal, political and economic World Institutional Quality Ranking, through which we can follow whether a country is improving or worsening its relative institutional environment. The calculated latent institutional quality measures can be especially useful in further panel data applications and add to the usual practice of using simply one or another index of institutional quality to capture the institutional environment. We make the Institutional Quality Dataset, covering up to 197 countries and territories from 1990 to 2010, freely available online.

Correspondence

Email: aljaz.kuncic@fdv.uni-lj.si

 

Advertisements

August 8, 2013 - Posted by | Uncategorized

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: